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Fourier and wavelet transforms, ubiquitous in
signal processing and data analysis, represent a
signal as a linear combination of vectors from
a basis set which iscomplete, meaning that the
number of basis vectors is such that there is no
redundancy, with exactly one possible represen-
tation for every signal to be decomposed. An al-
ternative approach, which has recently been the
subject of considerable research, is to decom-
pose a signal onto anovercompleteset, usually
referred to as thedictionary, in which the num-
ber of basis vectors (oratoms) is such that there
are many different possible representations for a
specific signal. To make the decomposition well-
defined, it is necessary to define some criterion
for selecting one particular solution. The simplest
of these is the minimuml2 norm solution, which
corresponds to the pseudo-inverse of the matrix
with the atoms of the dictionary as its columns.
Minimum sparsity, the number of non-zero coef-
ficients in the solution, offers significant advan-
tages as an optimality criterion. Such sparse rep-
resentations have found a number of applications
[1], including EEG (electroencephalography) and
MEG (magnetoencephalography) estimation [2],
time-frequency analysis [3], and spectrum esti-
mation [4].

Sparse representations are of particular interest
when one has reason, based on physics or other
prior knowledge, to expect the signals in ques-
tion to consist of a superposition of only a few
fundamental functions, the coefficients of which
are significant. In this case, it is useful to know
when the sparse decomposition of the signal may
be expected to correspond to the original gener-
ating coefficients. A number of recent unique-
ness results [2, 5, 6, 7, 8] provide conditions un-
der which a unique sparse decomposition exists,
so that exact reconstruction of the original gener-
ating coefficients is possible in the absence of any
noise.

These results, however, are of little assistance
when the signal is known to include a noise com-
ponent. Under these more realistic conditions,
one would like to bound the reconstruction error
in terms of the signal noise magnitude (that is,
given a bound on the size of the noise in the sig-
nal, provide a bound on the maximum distance
between any two appropriate sparse reprentations
of that signal). The construction of such bounds
is described in detail in a recent publication [9].
Of these bounds, the simplest to describe is con-
structed in terms ofζL, a measure of the stability
of the linear independence ofL-sized subsets of
atoms of a dictionary; given signals with sparse
representationα and signals′ with sparse repre-
sentationβ, one has the bound

‖∆α‖ ≤ ζ−1
L ‖∆s‖

on the difference∆α between the two solutions in
terms of the difference∆s between the two sig-
nals, whereL is the sum of the number of non-
zero coefficients in solutionsα andβ.
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Graph illustrating the increase in noise sensitiv-
ity with decreasing sparsity for DFT dictionaries
with M atoms, each of which is a vector of 8 co-
efficients. The sparse representation error magni-
tude may be as large asζ−1

L times the signal error
magnitude.

The figures compareζL values for two exam-
ple overcomplete dictionaries; one based on the
Discrete Fourier Transform (DFT) and the other
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Graph illustrating the increase in noise sensitiv-
ity with decreasing sparsity for DCT dictionaries
with M atoms, each of which is a vector of 8 co-
efficients. The sparse representation error magni-
tude may be as large asζ−1

L times the signal error
magnitude.

on the Discrete Cosine Transform (DCT). Except
at very low noise levels, very high degrees of
sparsity, or small overcompleteness factors, these
results indicate very high noise sensitivities for
the common DFT and DCT dictionaries. Re-
constructions with respect to the overcomplete
DCT dictionary are vastly more noise sensitive
than those with respect to the overcomplete DFT
dictionary. In superresolution applications using
overcomplete sinusoidal dictionaries [4], for ex-
ample, these results allow an explicit quantifica-
tion of the tradeoff between spectral resolution
(depending on the degree of overcompleteness of
the dictionary) and noise sensitivity of the result,
and also suggest that the DFT dictionary is a bet-
ter choice for superresolution than the DCT dic-
tionary due to the significantly lower noise sensi-
tivity of the former dictionary.
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